Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Mitsuko Onoda,* Anne-Claire Dhaussy and Yasushi Kanke

Advanced Materials Laboratory, National Institute for Material Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

Correspondence e-mail: onoda.mitsuko@nims.go.jp
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Structural characterization of $\mathrm{YV}_{4} \mathrm{O}_{8}$: simultaneous analysis of coexisting polytypes and simulation of diffuse scattering for a stacking disorder model

The structure of a crystal of newly synthesized $\mathrm{YV}_{4} \mathrm{O}_{8}$ was refined on the assumption that two polytypes and their respective twin forms intergrow. The model was expressed as a commensurate composite crystal with two types of subsystem: one is a $\mathrm{V}_{4} \mathrm{O}_{8}$ framework with rather large tunnels and the other consists of Y ions. In the tunnels, Y ions and vacancies are located at every second site in an ordered manner that is characteristic of each polytype. Refinement was performed using a high-dimensional formalism and all reflections from all domains. Diffuse streaks observed in the X-ray and electron diffraction patterns were simulated using the matrix method that has been used for one-dimensional disorder such as stacking faults. The unusual diffraction phenomena that occur in a crystal of $\mathrm{YV}_{4} \mathrm{O}_{8}$ are explained as arising from a multipledomain structure of coexisting polytypes.

1. Introduction

In a previous study by our group (Kanke \& Kato, 1997), the new phases $\alpha-\mathrm{YbV}_{4} \mathrm{O}_{8}$ (low-temperature form) and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$ (high-temperature form) were synthesized by solid-state reaction. Crystal structures of the α - and β-forms were determined by X-ray diffractometry using a single crystal and a twinned one, respectively (Kanke \& Kato, 1997; Kato et al., 1997). The structure of the α-form was described with a monoclinic cell (1): $P 12_{1} / n 1, a=9.0648$ (3), $b=10.6215$ (4), $c=$ 5.7607 (1) $\AA, \beta=90.184(3)^{\circ}, Z=4$. The structure of the β-form was determined using a twinned specimen and described with a monoclinic cell (2): $P 2{ }_{1} / n 11, a=9.0625$ (7), $b=$ 11.0086 (9), $c=5.7655$ (5) $\AA, \alpha=105.07$ (7) ${ }^{\circ}, Z=4$. For the sake of comparison between the α-form and the β-form, which has an A-centered pseudo-orthorhombic cell dimension with the relation $\mathbf{A}=\mathbf{a}, \mathbf{B}=2 \mathbf{b}+\mathbf{c}$, the structure of the β-form was described based on a monoclinic cell: $A 2_{1} / d 11, A=9.035$ (5), $B=21.44$ (3), $C=c=5.752$ (2) $\AA, \alpha=89.911$ (3) $)^{\circ}, Z=8$ (Kanke \& Kato, 1997). The three-dimensional V-O frameworks of the two forms are similar to the framework of $\mathrm{Fe}-\mathrm{O}$ in orthorhombic $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ (Decker \& Kasper, 1957). In α - and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}, \mathrm{Yb}$ ions occupy half of the [8]-coordinated sites in the tunnel of the framework running parallel to [001] ordered in ways that are characteristic of α - and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$, resulting in two types of superstructure of the $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ type.

Owing to the structural similarities of α - and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$, the possibility of intergrowths of the two forms was expected in the real crystals. Actually, the diffraction pattern of the crystal illustrated features that could originate from a multiple-

Received 12 December 2002
Accepted 12 May 2003
domain crystal (Friese et al., 1997). The structure was refined as a commensurate composite crystal with two types of subsystems, a $\mathrm{V}_{4} \mathrm{O}_{8}$ part and a Yb part, using higher-dimen-

- - - - -

-•••••••••
Figure 1
The measured reflections plotted schematically. Three-dimensional indices $H K L$ are based on the unit cell used for data collection $(A=$ 9.109, $B=21.356, C=5.774 \AA, \alpha \simeq 90, \beta \simeq 90, \gamma=90^{\circ}$), while fivedimensional indices hklmn are based on $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{k}_{1}=\mathbf{b}^{*} / 2, \mathbf{k}_{2}=\mathbf{c}^{*} / 2(a=$ 9.109, $b=10.678, c=2.887 \AA, \alpha \simeq 90, \beta \simeq 90, \gamma=90^{\circ}$. Solid circles assigned by $h k l 00$ represent the main reflections common to α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$. Hatched circles assigned by $h k l 11$ represent super-reflections that originate from the β-form and they can be indexed based on $A_{1}=$ $9.109, B_{1}=11.061, C_{1}=5.774 \AA, \alpha=105.129^{\circ}$. Hatched ellipses represent streaky reflections assigned by $h k l 01$ that originate from the α-form and can be indexed on a pseudo-orthorhombic cell with $A_{2}=9.109, B_{2}=$ $10.678, C_{2}=5.774 \AA$. Relations between the reciprocal basic vectors are $\mathbf{A}^{*}=\mathbf{a}^{*}=\mathbf{A}_{1}{ }^{*}=\mathbf{A}_{2}{ }^{*}, 2 \mathbf{B}^{*}=\mathbf{b}^{*}=\mathbf{B}_{1}{ }^{*}=\mathbf{B}_{2}^{*}, \mathbf{C}_{1}^{*}=\mathbf{b}^{*} / 2+\mathbf{c}^{*} / 2, \mathbf{C}^{*}=\mathbf{c}^{*} / 2=$ $\mathbf{C}_{2}{ }^{*}$, which are equivalent for the vector relations $\mathbf{A}_{1}=\mathbf{a}=\mathbf{A}_{1}=\mathbf{A}_{2}$, $\mathbf{B}_{1}=\mathbf{b}-\mathbf{c}, \mathbf{B}=\mathbf{b}=\mathbf{B}_{2}, \mathbf{C}=2 \mathbf{c}=\mathbf{C}_{1}=\mathbf{C}_{2}$.
sional formalism and the reflections of all domains simultaneously (Friese et al., 1997). All reflections in the diffraction pattern can be indexed using a lattice with $a=9.057$ (1), $b=$ 21.238 (5) and $c=5.7560$ (9) Å, yet multiple domains have to be taken into account to explain the diffraction pattern.

Both α - and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$ contain $\mathrm{V}^{3+}-\mathrm{V}^{4+}$ mixed-valence V atoms with similar $\mathrm{V}-\mathrm{O}$ frameworks. Therefore, the magnetic properties and electrical conductivities are interesting from the viewpoint of Mott's transition. However, trials to investigate the magnetic properties of α - and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$ failed (Kanke \& Kato, 1997) because of the ferromagnetic pyrochlore impurity $\mathrm{Yb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$.

In the $\mathrm{Y}-\mathrm{V}-\mathrm{O}$ system, the new phases α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ have been synthesized and identified to be isomorphous with α - and $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$. The $\mathrm{Y}-\mathrm{V}-\mathrm{O}$ system is free from the ferromagnetic pyrochlore phase. In addition, Y^{3+} is free from f electrons. The magnetism of the α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ phases has been investigated and discussed.

Single crystals have been prepared near the lower limit of the existence temperature range of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ (high-temperature form). After X-ray diffraction measurements from a single crystal using an automatic diffractometer, the diffraction pattern seems to have been assigned based on a pseudoorthorhombic unit cell with lattice constants $A=9.109, B=$ 21.356, $C=5.774 \AA$ A All strong reflections could be indexed based on a pseudo-orthorhombic cell with $a=9.109, b=$ $10.678, c=2.887 \AA$, and other weak reflections could be considered to originate from the two types of superstructure of the $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ type: one being the α-form and the other the β-form. The crystals have been considered to be intergrowths of the two forms and are expected to be multiple-domain crystals such as $\mathrm{YbV}_{4} \mathrm{O}_{8}$ (Friese et al., 1997). The Weissenberg photographs and electron diffraction patterns of the crystals, however, revealed that weak super-reflections which originate from the α-form are diffuse, while super-reflections from the β-form and all strong main reflections are sharp.

First, in the present work the structure of a multiple-domain crystal of $\mathrm{YV}_{4} \mathrm{O}_{8}$ was refined on the assumption that the α-form, the β-form and their respective twin forms intergrow. The model was expressed as a commensurate composite crystal with two types of subsystem (Janner \& Janssen, 1980; Kato, 1994); one is $\mathrm{V}_{4} \mathrm{O}_{8}$ and the other is Y , and the refinement was performed using high-dimensional formalism and reflections (all) from all domains simultaneously. Next, the diffuse streaks observed in the X-ray and electron diffraction patterns were simulated using the matrix method that has been used for one-directional disorder such as stacking faults (Hendricks \& Teller, 1942; Kakinoki \& Komura, 1965; Kakinoki, 1967; Kato et al., 1990).

2. Experimental

The starting materials $\mathrm{V}_{2} \mathrm{O}_{5}$ (99.9\%) and $\mathrm{Y}_{2} \mathrm{O}_{3}$ (99.9\%) were dried immediately before use at 873 and 1273 K , respectively. $\mathrm{V}_{2} \mathrm{O}_{3}$ was prepared by reducing $\mathrm{V}_{2} \mathrm{O}_{5}$ in an $\mathrm{H}_{2} / \mathrm{N}_{2}$ atmosphere at 1073 K for $2 \mathrm{~h} . \mathrm{V}_{2} \mathrm{O}_{4}$ was obtained by heating an equimolar mixture of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{V}_{2} \mathrm{O}_{3}$ in a sealed silica tube at 1273 K for

3 d. YVO_{4} was synthesized by heating an equimolar mixture of $\mathrm{Y}_{2} \mathrm{O}_{3}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$ at 1473 K for $3 \mathrm{~d} . \mathrm{YVO}_{3}$ was prepared by reducing YVO_{4} in an $\mathrm{H}_{2} / \mathrm{N}_{2}$ atmosphere at 1273 K for 1 d .

A powder specimen of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ was prepared as follows. $\mathrm{YVO}_{3}, \mathrm{YVO}_{4}$ and $\mathrm{V}_{2} \mathrm{O}_{3}$ were mixed in a 1.1:0.9:3 molar ratio. Approximately 2 g of the mixture was placed in a platinum crucible, sealed in an evacuated silica tube and heated at 1473 K for 1 d . The product obtained was characterized to be $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ by X-ray powder diffraction.
$\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ was prepared as follows. $\mathrm{YVO}_{3}, \mathrm{YVO}_{4}$ and $\mathrm{V}_{2} \mathrm{O}_{3}$ were mixed in a 1.1:0.9:3 molar ratio. Approximately 0.5 g of the mixture was sealed in a platinum tube and heated at 1673 K for 3 d . Both the crystalline specimen for the diffraction study and the specimen for magnetic susceptibility were obtained from the same batch.

The crystalline products of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ were investigated by Weissenberg photographs and single-crystal diffractometry. Weissenberg photographs were taken with a camera radius of

(a) Projection along $-\mathbf{C}$; (b) bounded projection $\left(0<x<\frac{1}{2}\right)$ along $-\mathbf{A} ;(c)$ bounded projection $\left(\frac{1}{2}<x<1\right)$ along $-\mathbf{A}$ of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$. Small solid, large open and medium hatched circles represent V, O and Y , respectively.
27.3 mm (Enraf-Nonius) and Ni -filtered $\mathrm{Cu} K \alpha$ radiation. The X-ray diffraction data were collected from a single crystal with an Enraf-Nonius CAD-4 automatic diffractometer using graphite-monochromated Mo $K \alpha$ radiation (Table 1).

The remaining products of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ were crushed and characterized by X-ray powder diffraction and electron diffraction. Electron diffraction patterns were taken using a 100 kV electron microscope (JEOL-1010).

The magnetic susceptibilities of α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ were obtained using a SQUID magnetometer (Quantum Design).

3. Results

3.1. Symmetry consideration

Part of the measured diffraction pattern is illustrated schematically in Fig. 1. The observed 3546 reflections [$I>$ $2 \sigma(I)]$ seem to be of three groups: the first indexed based on a pseudo-orthorhombic cell with $a=9.109, b=10.678, c=$ $2.887 \AA, \alpha \simeq 90, \beta \simeq 90, \gamma=90^{\circ}$, the second group indexed on a monoclinic cell with $A_{1}=9.109, B_{1}=11.061, C_{1}=5.774 \AA$, $\alpha=105.129^{\circ}$, and the third group indexed on a pseudoorthorhombic cell with $A_{2}=9.109, B_{2}=10.678, C_{2}=5.774 \AA$. Relations between the basic vectors are $\mathbf{A}_{1}=\mathbf{A}_{2}=\mathbf{a}, \mathbf{B}_{1}=\mathbf{b}-$

Figure 3
(a) Projection along $-\mathbf{C}$; (b) bounded projection $\left(0<x<\frac{1}{2}\right)$ along $-\mathbf{A}$; (c) bounded projection $\left(\frac{1}{2}<x<1\right)$ along $-\mathbf{A}$ of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. Small solid, large open and medium hatched circles represent V, O and Y , respectively.

Table 1
Experimental details.

Crystal data

Chemical formula
M_{r}
Cell setting, superspace
\quad group
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$
Radiation type
No. of reflections
for cell parameters
θ range (${ }^{\circ}$)
$\mu\left(\mathrm{mm}^{-1}\right)$
Temperature (K)
Crystal form, color
Crystal size (mm)
Data collection
Diffractometer
Data collection method
Absorption correction
$\quad T_{\min }$
$T_{\max }$
No. of measured, independent
and observed parameters
Criterion for observed reflections
$R_{\text {int }}$
$\theta_{\text {max }}\left({ }^{\circ}\right)$
Range of h, k, l

No. and frequency of standard reflections	3 every 240 min
Intensity decay $(\%)$	0
Refinement	F
Refinement on	$0.046,0.055$,
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right)$	$0.037,0.050(1615$ reflections $)$
$h k l 00$ common main $(\alpha$ - and β-forms)	$0.052,0.065(1461$ reflections $)$
$h k l 11$ super-reflections $(\beta$-form $)$	$0.108,0.129(470$ reflections $)$
$\quad h k l 01$ super-reflections $(\alpha$-form $)$	3546
No. of reflections	97
No. of parameters	92
No. of structural parameters	4
No. of scale factors	1
No. of parameters for	No H atoms present
\quad extinction correction	Calculated $w=1$
H-atom treatment	Anisotropic (Y and V of β-type)
Weighting scheme	and isotropic $(\mathrm{O}$ of β-type
Temperature factor	and Y, V and O of α-type)
	<0.0001
$(\Delta / \sigma)_{\text {max }}$	

Computer programs: FMLSM (Kato, 1994).
$\mathbf{c}, \mathbf{B}_{2}=\mathbf{b}, \mathbf{C}_{1}=\mathbf{C}_{2}=2 \mathbf{c}$, which are equivalent to the relations between the reciprocal vectors $\mathbf{A}_{1}{ }^{*}=\mathbf{A}_{2}{ }^{*}=\mathbf{a}^{*}, \mathbf{B}_{1}{ }^{*}=\mathbf{B}_{2}{ }^{*}=\mathbf{b}^{*}$, $\mathbf{C}_{1} *=\mathbf{b}^{*} / 2+\mathbf{c}^{*} / 2, \mathbf{C}_{2}^{*}=\mathbf{c}^{*} / 2$. If we adopt five reciprocal basic vectors, $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{k}_{1}=\mathbf{b}^{*} / 2, \mathbf{k}_{2}=\mathbf{c}^{*} / 2$, each reflection is expressed by $\mathbf{q}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+m \mathbf{k}_{1}+n \mathbf{k}_{2}$. The first group (1615 reflections) is assigned by $h k l 00$ and is considered to be the main group of reflections common to α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$. The

Table 2
Minimum system, $\boldsymbol{\sigma}, \mathbf{Z}$ matrices, symmetry and twin operations.

M* $\boldsymbol{\sigma}$ matrix	$\begin{aligned} & \mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}(a=9.109, b=10.678, c=2.887 \AA) \\ & \left(\left.0 \frac{1}{2} 0 \right\rvert\, 00 \frac{1}{2}\right) \end{aligned}$
\mathbf{Z} matrix of subsystem	$Z^{1}=\left(\begin{array}{lllll\|llll\|l\|llll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
	$Z^{2}=\left(\begin{array}{lllll\|lllll\|l\|lll}1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$
	$Z^{3}=\left(\begin{array}{lllll\|llll\|l\|l\|l}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
	$Z^{4}=\left(\begin{array}{llllll\|lllll\|l\|l\|ll}1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$
Symmetry operations	(i) x, y, z, u, v
	(ii) $-x,-y,-z,-u,-v$
	(iii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z, u, \frac{1}{2}+v$
	(iv) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z,-u, \frac{1}{2}-v$
	(v) x, y, z, u, v
	(vi) $-x,-y,-z,-u,-v$
	(vii) $\frac{1}{2}+x, \frac{1}{2}-y, z,-u, \frac{1}{2}+v$
	(viii) $\frac{1}{2}-x, \frac{1}{2}+y,-z, u, \frac{1}{2}-v$
Domain 1	Subsystem 1(V, O), 2(Y)
	Symmetry operation 1-4
	Atoms 1-7 for β - $\mathrm{YV}_{4} \mathrm{O}_{8}$
Domain 2	Subsystem 1(V, O), 2(Y)
	(Twin operation $x,-y, z,-v, w$) \times (symmetry operation 1-4)
	Atoms 1-7 for $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$
Domain 3	Subsystem 3(V, O), 4(Y)
	Symmetry operation 5-8
	Atoms 8-14 for $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$
Domain 4	Subsystem 3(V, O), 4(Y)
	(Twin operation $x, y,-z, u,-v$) \times (symmetry operation 5-8)
	Atom 8-14 for $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$

second group (1461 reflections) assigned by $h k l 11$ are superreflections that originate from the β-form, while the third group (470 reflections) assigned by $h k l 01$ are super-reflections that originate from the α-form. After consulting the results of the structural characterization of $\mathrm{YbV}_{4} \mathrm{O}_{8}$ (Kanke \& Kato, 1997; Kato et al., 1997; Friese et al., 1997), structure models of α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ are expressed as commensurate composite crystals consisting of basically common $\mathrm{V}_{4} \mathrm{O}_{8}$ frameworks and different arrangements of Y ions and vacancies in the tunnels of the framework.

Reciprocal basic vectors of the two subsystems of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, $\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}\right)$ for the $\mathrm{V}_{4} \mathrm{O}_{8}$ part and $\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{C}_{1}{ }^{*}=\mathbf{k}_{1}+\mathbf{k}_{2}\right)$ for the Y part, are related to a five-dimensional basis ($\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{k}_{1}$, $\left.\mathbf{k}_{2}\right)$ through $Z^{1}=(10000|01000| 00100)$ and $Z^{2}=(1000$ $0|01000| 00011$). Symmetry operations are expressed in a five-dimensional formalism based on ($\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{k}_{1}, \mathbf{k}_{2}$): $x, y, z, u, v ;-x,-y,-z,-u,-v ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z, u, \frac{1}{2}+v$; $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z,-u, \frac{1}{2}-v$. This implies systematic reflection conditions; no conditions for $h k l m n, k+l+n=$ even for $0 k l m n$ and $h=$ even for $h 0000$. Observed reflections with $k+l+n=$ odd for 0 klmn in Fig. 1 are considered to originate from the (010) twinning of the β-form. Reciprocal basic vectors of the two subsystems of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8},\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}\right)$ for the $\mathrm{V}_{4} \mathrm{O}_{8}$ part and $\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{C}_{2}{ }^{*}=\mathbf{k}_{2}\right)$ for the Y part, are related to the basis (\mathbf{a}^{*}, $\left.\mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{k}_{1}, \mathbf{k}_{2}\right)$ through $Z^{3}=(10000|01000| 00100)$ and Z^{4} $=(10000|01000| 00001)$. Symmetry operations for the model are expressed in a five-dimensional formalism based on the basis $\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{k}_{1}, \mathbf{k}_{2}\right): x, y, z, u, v ;-x,-y,-z,-u,-v$; $\frac{1}{2}+x, \frac{1}{2}-y, z, u, \frac{1}{2}+v ; \frac{1}{2}-x, \frac{1}{2}+y,-z,-u, \frac{1}{2}-v$, and they

Table 3
Atomic parameters of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$.
In the row for Y , atomic parameters with s.u.'s are listed based on $A_{1}=9.109, B_{1}=11.061, C_{1}=5.774 \AA, \alpha=$ 105.129° for $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ and based on $A_{2}=9.109, B_{2}=10.678, C_{2}=5.774 \mathrm{~A}, \beta=90^{\circ}$ for $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. In the first rows for V and O , fundamental parameters with s.u.'s are listed based on a, b and c for both $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. In the second rows for V and O , the cosine amplitudes with s.u.'s of the Fourier series of the modulation function for the wavevector $\mathbf{k}_{1}+\mathbf{k}_{2}\left(=\mathbf{b}^{*} / 2+\mathbf{c}^{*} / 2\right)$ in subsystem 1 or $\mathbf{k}_{2}\left(=\mathbf{c}^{*} / 2\right)$ in subsystem 3 are listed based on $a=9.109, b=10.678, c=2.887 \AA, \alpha=\beta=\gamma=90^{\circ}$.

No.	Atom	Subsystem	x	y	z	$100 U \mid U_{\text {eq }}\left(\AA^{2}\right)$
Domains I and II ($\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$)						
1	Y	2	0.24249 (7)	0.34248 (5)	0.5505 (2)	1.16 (2)
2	V1	1	0.05925 (8)	0.11438 (6)	0.75	0.51 (2)
			0.0154 (1)	0.00378 (9)	0.0017 (4)	0.01 (2)
3	V2	1	0.41425 (6)	0.10157 (5)	0.25	0.41 (2)
			0.0092 (2)	0.0084 (2)	0.0029 (8)	-0.02 (5)
4	O1	1	0.2059 (2)	0.1561 (2)	0.25	0.36(6)
			0.007 (1)	-0.003 (1)	0.074 (4)	0.0
5	O2	1	0.1165 (3)	0.4756 (2)	0.25	0.39 (6)
			-0.0033 (6)	0.0008 (5)	-0.022 (2)	0.0
6	O3	1	0.4742 (3)	0.2171 (2)	0.75	0.44 (6)
			0.0099 (4)	-0.0050 (4)	-0.001 (1)	0.0
7	O4	1	0.4168 (2)	0.4289 (2)	0.25	0.29 (5)
			0.0027 (8)	-0.0024 (6)	-0.026 (2)	0.0
Domains III and IV ($\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$)						
8	Y	4	0.24249	0.34248	0.8730 (5)	0.29 (6)
9	V1	3	0.05925	0.11438	0.75	0.3 (1)
			-0.0185 (8)	-0.0053 (5)	-0.003 (2)	0.1 (1)
10	V2	3	0.41425	0.10157	0.25	0.5 (2)
			-0.0057 (8)	-0.0060 (6)	0.000 (2)	0.0 (1)
11	O1	3	0.2059	0.156	0.25	2.2 (4)
			-0.004 (3)	-0.007 (3)	-0.049 (9)	0.0
12	O2	3	0.1165	0.4756	0.25	2.2
			0.003 (4)	-0.004 (3)	-0.03 (1)	0.0
13	O3	3	0.4742	0.2171	0.75	2.2
			-0.014 (4)	0.018 (4)	0.01 (1)	0.0
14	O4	3	0.4168	0.4289	0.25	2.2
			-0.001 (4)	0.003 (3)	-0.03 (1)	0.0

Relations among reciprocal bases, $\boldsymbol{\sigma}$, \mathbf{Z}, symmetry operations and twin operations are shown together in Table 2. The three-dimensional atomic arrangement is related to a five-dimensional structure factor with the help of the matrix \mathbf{P}^{-1} derived from the \mathbf{Z} and σ matrixes (Kato, 1990).

Refinement was performed on the basis of $|F|$ through the program FMLSM (Kato, 1994) with unit weight for all reflections. All 3546 intensity data $[I>2 \sigma(I)]$ of the three groups were used after re-indexing based on ($\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{k}_{1}, \mathbf{k}_{2}$), namely 1615 reflections of (hkl00), 1461 reflections of (hkl11) and 470 reflections of ($h k l 01$). In the structurefactor calculation a summation over two points along [00011] or [00001] can be used rather than integration.

Structures of α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ are described as commensurate composite crystals. Composite crystals consist of two interpenetrating substructures. In the β-form, Y ions occupy every second [8]-coordinated site along [001] in the tunnels of the $\mathrm{V}_{4} \mathrm{O}_{8}$ framework and the unit cell of the Y part is $\mathbf{A}_{1}=\mathbf{a}, \mathbf{B}_{1}=\mathbf{b}-\mathbf{c}, \mathbf{C}_{1}=$ 2c. Its cell volume is twice the basic cell volume of the $\mathrm{V}_{4} \mathrm{O}_{8}$ part based on $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and no modulation of Y occurs from the influence of $\mathrm{V}_{4} \mathrm{O}_{8}$. On the
imply systematic reflection conditions; no conditions for $h k l m n, h+n=$ even for $h 0 l 0 n$ and $k=$ even for $0 k 0 m 0$.

3.2. Structure refinement

Simultaneous refinement of the α - and β-forms is attempted, because no pure single crystal of either the α - or β-form has been obtained. The diffuse reflections along \mathbf{b}^{*} probably originate from the somewhat defective stacking along \mathbf{b} of the α-type order arrangement of Y along \mathbf{c}. The number of reflections from the α-form is considerable and the reflections are expected to bring about fairly good results, although diffuseness can affect the precision of the atomic parameters of the α-form.

The reflections violating the reflection conditions of the β-form suggest (010) twinning of the β-form. Although no reflection violates the reflection conditions of the α-form, preliminary refinement using the (001) twin model of the α-form has improved convergence. Then, the two twin domains for the α - and β-forms have been considered. The twin operations for the α - and β-forms are x, y, z, u, v; $x,-y, z,-u, v$ and $x, y, z, u, v ; x, y,-z, u,-v$, respectively.
other hand, modulations of V and O occur through the influence of Y and vacancies in the tunnels. In the α-form, the Y ions and vacancies are arranged regularly with a unit cell $\mathbf{A}_{2}=$ $\mathbf{a}, \mathbf{B}_{2}=\mathbf{b}, \mathrm{C}_{2}=2 \mathbf{c}$ and with double the cell volume of the $\mathrm{V}_{4} \mathrm{O}_{8}$ part. No modulation of Y occurs, while V and O are modulated through the influence of Y and vacancies, just like in the β-form.

For Y , the atomic coordinates and thermal parameters, anisotropic in the β-form and isotropic in the α-form, were adopted as structural parameters. The accuracy of the α-form parameters is estimated to be lower than that of the β-form parameters because of the small volume ratio of the α - to the β-form and probably weakened super-reflection intensities of the α-form owing to diffuseness. Besides, the basic atomic coordinates of V and O that are common to the α - and β-forms, the cosine amplitudes for the wavevector $\mathbf{k}_{1}+\mathbf{k}_{2}$ (= $\left.\mathbf{b}^{*} / 2+\mathbf{c}^{*} / 2\right)$ in the β-form or $\mathbf{k}_{2}\left(=\mathbf{c}^{* / 2}\right)$ in the α-form were adopted as variable parameters and the sine terms were fixed to be zero after considering the structural degree of freedom of the β - and α-forms. The thermal parameters adopted are anisotropic modulated for the V atoms of the β-form, isotropic modulated for the V atoms of the α-form, isotropic individual

Table 4
Selected interatomic distances (\AA).

$\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$					
$\mathrm{Y}-\mathrm{O} 1$	2.465 (4)	V1-O1	2.077 (4)	V2-O1	1.991 (4)
$\mathrm{Y}-\mathrm{O} 1^{\text {i }}$	2.427 (4)	$\mathrm{V} 1-\mathrm{O} 1^{\mathrm{i}}$	2.062 (4)	$\mathrm{V} 2-\mathrm{O} 2^{\text {viii }}$	2.007 (4)
$\mathrm{Y}-\mathrm{O} 2$	2.306 (4)	$\mathrm{V} 1-\mathrm{O}^{\text {ii }}$	1.970 (5)	$\mathrm{V} 2-\mathrm{O} 2^{\text {iii }}$	1.988 (4)
$\mathrm{Y}-\mathrm{O} 2^{\text {i }}$	2.302 (4)	$\mathrm{V} 1-\mathrm{O} 4^{\text {iii }}$	1.986 (4)	$\mathrm{V} 2-\mathrm{O} 2^{\text {ix }}$	2.016 (4)
$\mathrm{Y}-\mathrm{O} 3$	2.395 (4)	$\mathrm{V} 1-\mathrm{O} 4^{\text {iv }}$	1.944 (4)	$\mathrm{V} 2-\mathrm{O}^{\mathrm{x}}$	1.940 (4)
$\mathrm{Y}-\mathrm{O} 3^{\text {ii }}$	2.425 (4)	$\mathrm{V} 1-\mathrm{O} 4^{\text {ii }}$	1.928 (4)	$\mathrm{V} 2-\mathrm{O} 3$	1.952 (4)
$\mathrm{Y}-\mathrm{O} 4$	2.324 (4)	$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$	1.967 (4)	$\mathrm{V} 2{ }^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$	1.982 (4)
$\mathrm{Y}-\mathrm{O} 4^{\text {i }}$	2.301 (4)	$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{v}}$	1.979 (4)	$\mathrm{V} 2-\mathrm{O} 2{ }^{\text {iiii }}$	1.983 (4)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O}^{\text {vi }}$	1.976 (5)	$\mathrm{V} 2-\mathrm{O} 2{ }^{\text {vii }}$	2.000 (4)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 4^{\text {vii }}$	1.928 (4)	$\mathrm{V} 2-\mathrm{O} 2^{\text {ii }}$	2.021 (4)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 4^{\text {ii }}$	2.052 (4)	$\mathrm{V} 2-\mathrm{O} 3$	2.017 (4)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 4^{\mathrm{v}}$	2.071 (4)	$\mathrm{V} 2-\mathrm{O}^{\text {i }}$	2.008 (4)
$\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$					
$\mathrm{Y}-\mathrm{O} 1^{\text {i }}$	2.37 (3)	V1-O1	1.99 (2)	V2-O1	1.98 (2)
$\mathrm{Y}-\mathrm{O} 1^{\text {v }}$	2.48 (2)	$\mathrm{V} 1-\mathrm{O} 1^{\text {i }}$	1.99 (2)	$\mathrm{V} 2-\mathrm{O} 2^{\mathrm{xvi}}$	2.03 (2)
$\mathrm{Y}-\mathrm{O} 2^{\text {i }}$	2.32 (2)	$\mathrm{V} 1-\mathrm{O} 3^{\text {xii }}$	1.90 (3)	$\mathrm{V} 2-\mathrm{O} 2^{\text {xvii }}$	1.98 (2)
$\mathrm{Y}-\mathrm{O} 2^{\text {v }}$	2.27 (2)	$\mathrm{V} 1-\mathrm{O} 4^{\text {xii }}$	2.03 (3)	$\mathrm{V} 2-\mathrm{O} 2^{\text {xiii }}$	2.03 (2)
$\mathrm{Y}-\mathrm{O} 3^{\text {i }}$	2.35 (3)	$\mathrm{V} 1-\mathrm{O} 4^{\text {xi }}$	2.05 (2)	$\mathrm{V} 2-\mathrm{O}^{\text {x }}$	2.06 (3)
$\mathrm{Y}-\mathrm{O} 3^{\text {xi }}$	2.40 (3)	$\mathrm{V} 1-\mathrm{O} 4^{\text {xiii }}$	2.00 (2)	$\mathrm{V} 2-\mathrm{O} 3$	1.94 (3)
$\mathrm{Y}-\mathrm{O} 4^{\text {i }}$	2.29 (2)	$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$	2.07 (2)	$\mathrm{V} 2{ }^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$	2.00 (2)
$\mathrm{Y}-\mathrm{O} 4^{\text {v }}$	2.31 (3)	$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{v}}$	2.013 (2)	$\mathrm{V} 2^{\mathrm{i}}-\mathrm{O} 2^{\text {xviii }}$	2.01 (2)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O}^{\text {xi }}$	2.06 (3)	$\mathrm{V} 2^{\mathrm{i}}-\mathrm{O} 2^{\text {xiii }}$	2.01 (2)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 4^{\mathrm{xi}}$	1.96 (3)	$\mathrm{V} 2^{\mathrm{i}}-\mathrm{O} 2^{\mathrm{xv}}$	1.96 (2)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 4^{\text {xiv }}$	1.96 (2)	$\mathrm{V} 2{ }^{\text {i }}-\mathrm{O} 3$	1.90 (2)
		$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 4^{\mathrm{xv}}$	1.99 (2)	$\mathrm{V} 2^{\mathrm{i}}-\mathrm{O} 3^{\mathrm{i}}$	2.02 (3)

Symmetry codes based on a, b and c: (i) $x, y, z+1$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{3}{2}-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}+z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}-z$; (v) $x, y, z+2$; (vi) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{5}{2}-z$; (vii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}+z$; (viii) $\frac{1}{2}-x, y-\frac{1}{2}, z-\frac{1}{2}$; (ix) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z ;$ (x) $x, y, z-1$; (xi) $x-\frac{1}{2}, \frac{1}{2}-y, z+1$; (xii) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (xiii) $\frac{1}{2}-x, y-\frac{1}{2}, 1-z$; (xiv) $x-\frac{1}{2}, \frac{1}{2}-y, z+2$; (xv) $\frac{1}{2}-x, y-\frac{1}{2}, 2-z$; (xvi) $\quad \frac{1}{2}+x, \frac{1}{2}-y, z ; \quad$ (xvii) $\quad \frac{1}{2}-x, y-\frac{1}{2},-z ; \quad$ (xviii) $\frac{1}{2}+x, \frac{1}{2}-y, z+1$.
for the O atoms of the β-form and isotropic common for the O atoms of the α-form.

Furthermore, four scale factors and one parameter for the extinction correction were considered as parameters. The agreement ${ }^{\mathbf{1}}$ was satisfactory with 92 structural parameters; R_{F} $=0.046$ and $w R_{F}=0.055$. The final parameters are listed in Table 3. The structure models of the α - and β-forms are illustrated using the program PRJMS (Yamamoto, 1993) in Figs. 2 and 3 based on the final parameters. The final F-based scale factors are $0.673(2), 0.659(2), 0.231$ (4) and 0.277 (4), and they correspond to the volume ratio of twin domains I, II, III, IV 8.48 (5):8.13(5):1.00:1.44 (7), as the volume of each domain is proportional to the square of the scale factor. Domains I and II correspond to two twin domains of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ while domain III and IV are two twin domains of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. The parameter for extinction correction is $1.12(4) \times 10^{-5}$. The R_{F} and $w R_{F}$ values for the three reflection data groups, the superposition of the common main reflections hkl00, super-reflections $h k l 11$ from domains I and II, and superreflections $h k l 01$ from domains III and IV are listed in Table 1. Selected interatomic distances are listed in Table 4.

[^0]
3.3. X-ray diffraction pattern in Weissenberg photographs and electron diffraction patterns

In a Weissenberg photograph of the $H K 1$ layer based on the cell used for data collection, streaks along \mathbf{B}^{*} are present at $K=2 n$ and sharp reflections are at $K=2 n+1$. In the electron diffraction patterns with incident beams perpendicular to \mathbf{B}^{*}, namely parallel to $\mathbf{A}, \mathbf{A}+\mathbf{C}$ and $\mathbf{A}+2 \mathbf{C}$, streaks and sharp reflections also appear alternately along \mathbf{B}^{*} at $K=2 n$ and $K=$ $2 n+1$. The pattern with the incident beam parallel to the A axis is shown in Fig. 4. As the positions of the streaks are regarded as those of the super-reflections of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$, we considered that the microdomains of the α-form were brought about because of positional disorder of columns in which Y sites and vacancies alternate along \mathbf{c}.

3.4. Simulation of diffuse scattering intensities

The diffuse intensity distributions may be examined on the basis of the stacking disorder model. The multiple-domain structure including microdomains of the α-form can be described in terms of the stacking sequence along the b direction of the elementary slice units whose sizes are expressed by $a, b^{\prime}=b / 2, c^{\prime}=2 c$. Two elementary slice units, the P and Q units, are shown in Fig. 5. They are respectively derived from the atomic coordinates of the α-form between $0<y<\frac{1}{2}$ and $\frac{1}{2}<y<1$, based on $\mathbf{a}, \mathbf{b}, 2 \mathbf{c}$, and local symmetries within the slice units are x, y, z and $x+\frac{1}{2}, 1-y, \frac{1}{2}+z$, based

Electron diffraction pattern from $\mathrm{YV}_{4} \mathrm{O}_{8}$.
on $\mathbf{a}, \mathbf{b}^{\prime}=\mathbf{b} / 2 \mathbf{c}^{\prime}=2 \mathbf{c}$. The intensity was calculated using the matrix method, taking into account a probability matrix \mathbf{P} for the stacking sequence, where $(\mathbf{P})_{s t}=P_{s t}$ and $P_{s t}$ is the probability of finding the t th stacking mode after the s th stacking mode. If the t th stacking mode is P or Q, the stacking sequence could be expressed by selecting a unit, a P or Q unit, over the last unit after shifting by a vector \mathbf{b}^{\prime}. We use the other stacking mode P_{s} or Q_{s}, which indicates a selection of P or Q units over the last unit with a shift vector of $\mathbf{b}^{\prime}+\mathbf{c}^{\prime} / 2$. The models of the α-form and its twin structure are expressed by $P Q P Q \ldots$ and $Q_{s} P_{s} Q_{s} P_{s} \ldots$, while those of the β-form and its twin structure are expressed by $P_{s} Q P_{s} Q \ldots$ and $P Q_{s} P Q_{s} \ldots$. After some trials, the model of Table 5 was expected to approximate the actual structure. The P-type stacking sequences are divided into three types: P^{1}, P^{2} and P^{3}. P^{1} and $P^{2}\left(\right.$ or $\left.P^{3}\right)$ are distinguished from each other by the type of preceding stacking, namely Q or $Q_{s} . P^{2}$ and P^{3} are distinguishable by the type of second former stacking, namely P or P_{s}. In the same manner,
Q, P_{s} and Q_{s} are divided into their respective three groups. In the model, P^{1}, Q^{1}, P_{s}^{1} and Q_{s}^{1} are followed respectively by Q, P, Q_{s} and P_{s} with probability $1-\gamma$, and followed respectively by Q_{s}, P_{s}, Q and P with probability $\gamma . P^{2}, Q^{2}, P_{s}^{2}$ and Q_{s}^{2} are resectively followed by Q_{s}, P_{s}, Q and P with probability $1-\delta$, and followed by Q, P, Q_{s} and P_{s} with probability $\delta . P^{3}, Q^{3}, P_{s}^{3}$ and Q_{s}^{3} are respectively followed by Q_{s}, P_{s}, Q and P with probability $1-\varepsilon$, and followed by Q, P, Q_{s} and P_{s} with probability $\varepsilon . P^{1}, Q^{1}, P_{s}^{1}$ and Q_{s}^{1} constitute α-type sequences, while P^{2}, Q^{2}, P_{s}^{2} and Q_{s}^{2} constitute β-type sequences after repeating twice or more, P^{3}, Q^{3}, P_{s}^{3} and Q_{s}^{3} are β-type sequences appearing just after α-type sequences. The intensity calculation was performed with the program FU1 (Kato et al., 1990), which has been applied to solve the structure of $\mathrm{Pb}_{0.333} \mathrm{~V}_{2} \mathrm{O}_{5}$. The results of the intensity calculation using the parameter values $\delta=0.01$ and $\gamma=\varepsilon=0.15$ are shown in Fig. 6 for the reciprocal coordinates $0 \eta^{\prime} L$ with $L=0,1,2,3$ and 4 based on $\mathbf{a}, \mathbf{b}^{\prime}=\mathbf{b} / 2, \mathbf{c}^{\prime}=2 \mathbf{c}$.

3.5. Magnetic susceptibility

Fig. 7(a) shows the magnetic susceptibility, χ, of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. Above $78 \mathrm{~K}, \chi$ can be expressed as the sum of the Curie-Weiss term and a temperature-independent term (Table 6). The Curie constants obtained correspond to intermediates between $4(S=1 / 2)$ per formula unit and $3(S=1 / 2+S=1)$ per formula unit. Negative Weiss temperatures indicate antiferromagnetic interactions. At $78 \mathrm{~K}, \chi$ shows a small jump and increases linearly with decreasing temperature. Then, χ shows a maximum at 52 K (external field $H=0.1 \mathrm{~T}$) or $51 \mathrm{~K}(H=$ 5.0 T) and decreases abruptly. About $60-70 \%$ of χ vanishes on the transition. For $H=0.1 \mathrm{~T}, \chi$ increases again below 25 K and exhibits an antiferromagnetic behavior at 12 K . For $H=0.5 \mathrm{~T}$, on the other hand, χ is almost constant down to 5 K .

Figure 6
Intensity distributions of X-ray diffuse scattering corresponding to $0 \eta^{\prime} L$ with $L=0,1,2,3$ and 4, calculated for the model of Table 5. Reciprocal coordinates η^{\prime} and indices H, L are based on $\mathbf{a}, \mathbf{b}^{\prime}=\mathbf{b} / 2, \mathbf{c}^{\prime}=2 \mathbf{c}$. Reciprocal coordinates based on $\mathbf{A}=\mathbf{a}, \mathbf{B}=2 \mathbf{b}, \mathbf{C}=2 \mathbf{c}$ can be represented as $0 \eta L$ and they are to be compared with the three-dimensional indices $H K L$ of Figs. 1 and 4.

Figure 5
Elementary slice units P and Q. (a) Projection along $-\mathbf{c}^{\prime}$; (b) bounded projection ($0<x<\frac{1}{2}$) along -a; (c) bounded projection ($\frac{1}{2}<x<1$) along $-\mathbf{a}$.

Table 5
Probability table (\mathbf{P} table) for a model.

Stacking mode	Elementary unit	Shift vector
P	P	\mathbf{b}^{\prime}
Q	Q	\mathbf{b}^{\prime}
P_{s}	P	$\mathbf{b}^{\prime}+\mathbf{c}^{\prime} / 2$
Q_{s}	Q	$\mathbf{b}^{\prime}+\mathbf{c}^{\prime} / 2$

$l-2$	$l-1$	l	$\begin{aligned} & l-1 \\ & l \\ & l+1 \end{aligned}$	$\underset{P^{1}}{Q}$	$\begin{aligned} & P \\ & Q_{s} \\ & P^{2} \end{aligned}$	$\begin{aligned} & P_{s} \\ & Q_{s} \\ & P^{3} \end{aligned}$	$\begin{aligned} & P \\ & Q^{1} \end{aligned}$	$\begin{aligned} & Q \\ & P_{s} \\ & Q^{2} \end{aligned}$	$\begin{aligned} & Q_{s} \\ & P_{s} \\ & Q^{3} \end{aligned}$	$\begin{aligned} & Q_{s} \\ & P_{s}^{1} \end{aligned}$	$\begin{aligned} & P_{s} \\ & Q \\ & P_{s}^{2} \end{aligned}$	$\begin{aligned} & P \\ & Q \\ & P_{s}^{3} \end{aligned}$	$\begin{aligned} & P_{s} \\ & Q_{s}^{1} \end{aligned}$	$\begin{aligned} & Q_{s} \\ & P \\ & Q_{s}^{2} \end{aligned}$	Q P Q_{s}^{3}
$P$$P_{s}$	Q	P^{1}		0	0	0	$1-\gamma$	0	0	0	0	0	0	0	γ
	$Q_{\text {s }}$	P^{2}		0	0	0	δ	0	0	0	0	0	0	$1-\delta$	0
	Q_{s}	P^{3}		0	0	0	$1-\varepsilon$	0	0	0	0	0	0	ε	0
	P	Q^{1}		$1-\gamma$	0	0	0	0	0	0	0	γ	0	0	0
Q	P_{s}	Q^{2}		δ	0	0	0	0	0	0	$1-\delta$	0	0	0	0
Q_{s}	P_{s}	Q^{3}		$1-\varepsilon$	0	0	0	0	0	0	ε	0	0	0	0
	Q_{s}	P_{s}^{1}		0	0	0	0	0	γ	0	0	0	$1-\gamma$	0	0
P_{s}	Q	P_{s}^{2}		0	0	0	0	$1-\delta$	0	0	0	0	δ	0	0
P	Q	P_{s}^{3}		0	0	0	0	ε	0	0	0	0	$1-\varepsilon$	0	0
	P_{s}	Q_{s}^{1}		0	0	γ	0	0	0	$1-\gamma$	0	0	0	0	0
Q_{s}	P	Q_{s}^{2}		0	$1-\delta$	0	0	0	0	δ	0	0	0	0	0
Q	P	Q_{s}^{3}		0	ε	0	0	0	0	$1-\varepsilon$	0	0	0	0	0

Table 6
Curie constant, C, Weiss temperature, θ, and temperature-independent susceptibility, χ_{0}, of α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$.

Upper: $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$, above $78 \mathrm{~K}, H=0.1 \mathrm{~T}$; middle: $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$, above $78 \mathrm{~K}, H=$ 5.0 T; lower: $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, above $190 \mathrm{~K}, H=1.0 \mathrm{~T}$.

$C\left(\right.$ e.m.u. $\left.\mathrm{K} \mathrm{mol}^{-1}\right)$	$\theta(\mathrm{K})$	$\chi_{0}\left(\mathrm{e} . \mathrm{m} . \mathrm{u} . \mathrm{mol}^{-1}\right)$
$1.90(3)$	$-60(2)$	$1.55(6) \times 10^{-3}$
$1.79(3)$	$-54(2)$	$1.53(6) \times 10^{-3}$
$1.44(13)$	$-88(15)$	$1.5(2) \times 10^{-3}$

Fig. $7(b)$ shows χ for $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$. Above $190 \mathrm{~K}, \chi$ can be expressed as the sum of the Curie-Weiss term and a temperature-independent term (Table 6). The Curie constant obtained corresponds to $4(S=1 / 2)$ per formula unit. χ shows two maxima at 190 and 83 K . Below $83 \mathrm{~K}, \chi$ decreased abruptly, but more moderately than that of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8} . \chi$ increases again below 35 K .

4. Discussion

4.1. Description of the structure

Figs. 2 and 3 show the crystal structure models of α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$. Both structures can be regarded as superstructures of orthorhombic $\mathrm{CaFe}_{2} \mathrm{O}_{4} . \mathrm{Fe}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}$ frameworks are essentially the same in $\mathrm{CaFe}_{2} \mathrm{O}_{4}, \alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, and they all have rather large tunnels. The three structures are distinguished from each other by the arrangement of the cations in the tunnels. In $\mathrm{CaFe}_{2} \mathrm{O}_{4}$, the Ca ions occupy all available [8]-coordinated sites, while, in α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, the Y ions are located at every second site so that occupied and vacant sites alternate along [001]. In other words, $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ are composed of a $\mathrm{V}_{4} \mathrm{O}_{8}$ framework and columns of Y ions and vacancies whose repeating unit is twice
the fundamental c of the framework, as in $\alpha-\mathrm{YbV}_{4} \mathrm{O}_{8}$ or $\beta-\mathrm{YbV}_{4} \mathrm{O}_{8}$. The models of α - and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ could be expressed as commensurate composite crystals, as shown in Tables 2 and 3. The diffraction pattern of a crystal showed features that could originate from a fourfold domain crystal: two domains of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, domain I-II, and two domains of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$, domain III-IV. After refinement of the four-domain structure, the volume ratio of the four domains are obtained as 8.48 (5):8.13 (5):1.00:1.44 (7), i.e. the estimated volume percentages of β - and $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ are 87.2 and 12.8%. The volumes of domains III and IV, however, may be underestimated because the reflection characteristics of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ are rather diffuse.

4.2. The disordered structure of $\mathrm{YV}_{4} \mathrm{O}_{8}$

The intensity distribution of scattering was calculated based on the matrix method using the values of $\gamma=\varepsilon=0.15$ and $\delta=$ 0.01 in the model of Table 5. The distribution is shown in Fig. 6 for reciprocal coordinates $0 \eta L$ based on $\mathbf{A}=\mathbf{a}, \mathbf{B}=2 \mathbf{b}=4 \mathbf{b}^{\prime}$, $\mathbf{C}=2 \mathbf{c}$. The curves are to be compared with patterns in Figs. 1 and 4. The intensity distribution for $L=2 n$, which results in sharp and strong Bragg reflections, corresponds to the superposition of the contributions of the $\mathrm{V}_{4} \mathrm{O}_{8}$ framework, the average structure of the Y ion and vacancy columns with the fundamental period \mathbf{c} of both $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. Simulation for $L=2 n+1$ corresponds to the order and disorder arrangement of the Y ion and vacancy columns. Streaks pass through the positions expressed by $L=2 n+1$ and they reflect the $2 \mathbf{c}$ repeating unit of the columns in which Y-occupied and vacant sites alternate along [001]. The diffuse maxima appear at $\eta^{\prime}=-2.0,-1.5,-1.0, \ldots$ or $\eta=-8.0,-6.0,-4.0, \ldots$ and they coincide in position with those of the observed patterns. The maxima could also be indexed on a pseudo-orthorhombic cell with $A_{2}=9.109, B_{2}=10.678, C_{2}=5.774 \AA$. The sharp
maxima on $0 \eta L$ for $L=2 n+1$ appear at $\eta^{\prime}=-1.75,-1.25$, $-0.75, \ldots$ or $\eta=-7.0,-5.0,-3.0, \ldots$ and they coincide in position with sharp spots that could be indexed on a monoclinic cell with $A_{1}=9.109, B_{1}=11.061, C_{1}=5.774 \AA, \alpha=$ 105.129°. As simulation has resulted in a good visual agreement between calculated intensities and observed patterns, the model of Table 5 is considered to give an approximate but satisfactory explanation of the streaks observed in the pattern of the multiple-domain structure of $\mathrm{YV}_{4} \mathrm{O}_{8}$.

The model means that P^{2}, Q^{2}, P_{s}^{2} and Q_{s}^{2}, which are β-type sequences after repeating twice or more, are followed by a β-type sequence with probability 0.99 and by an α-type sequence with probability 0.01 . Other sequences, namely the α-type sequence and the first β-type sequence after α-type sequences, are followed by α-type sequences with probability 0.85 and by β-type sequences with probability 0.15 . In order to obtain the microscopic image of stacking sequences from the parameters, γ, δ and ε, the simulation has been attempted using random numbers and the program SQ3 (Kato et al., 1990). Part of the model obtained for the case of $\gamma=\varepsilon=0.15$ and $\delta=0.01$ is illustrated in Fig. 8. Once a domain of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ has appeared, β-type sequences continue with the large probability $1-\delta$ and the average size of the $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ domain, which is rather large. On the contrary, α-type sequences are obstructed by a β-type sequence with the considerable probability γ and the average domain sizes of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ are rather small. After the β-type sequence which obstructs α-type sequences, the α-type sequence follows with large probability $1-\varepsilon$ and the frequency of appearance of the $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ domain is rather large. A single β-type sequence plays the role of a boundary between two domains of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$.

The program $F U 1$ could estimate the existence probability of 12 types of stacking modes, $P^{1}, P^{2}, P^{3}, Q^{1}, Q^{2}, Q^{3}, \ldots$, as $0.0735,0.1654,0.011,0.0735,0.1654,0.011, \ldots$. As the volume ratio of domain III or IV to domain I or II is estimated as

Figure 7
Temperature dependence of the magnetic susceptibility χ of (a) $\alpha-\mathrm{YbV}_{4} \mathrm{O}_{8}$ and (b) $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$.
$[0.0735 \times \gamma+0.1654 \times(1-\delta)+0.011 \times \varepsilon] /[0.0735 \times(1-\gamma)+$ $0.1654 \times \delta+0.011 \times(1-\varepsilon)]$, the volume proportions 29 and 71% can be attributed to $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$.

The crystal seems to consist of two wide domains I and II of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ and two narrow domains III and VI of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. These phase-separation-like phenomena could be the result of fluctuations in experimental conditions and/or metastable equilibrium conditions connected with the kinetics of the solid-state phase transition.

4.3. Estimation of average domain size

All diffuse streaks are centered at the positions of the α-type superstructure reflections and they indicate the presence of narrow lamellar domains of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. All β-type superstructure reflections are rather sharp and they indicate the presence of wide domains of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$. We consider relations between the size distribution of domains and the continuing probabilities used in simulation of diffuse scattering intensities and then we estimate the average domain sizes of the α - and β-forms.

We denote a linear domain size, parallel to \mathbf{b}, and the average linear domain size of an α-form domain, respectively, by L and R taken in the unit of $b^{\prime}=b / 2=5.339 \AA$.

$$
R=\sum_{L=1}^{\infty} L q(L)
$$

where $q(L)$ is a relative occurrence frequency of a domain with size $L . q(L)$ for the α-form is expected to be proportional to $(1-\gamma)^{L}$, because α-type sequences are obstructed by β type sequences with the probability γ in domains III and IV. As the summation of $(1-\gamma)^{L}$, for $L=1,2,3, \ldots, \infty$, is reduced to $(1-\gamma) / \gamma, q(L)$ can be expressed as $(1-\gamma)^{L} \times \gamma /(1$ $-\gamma)$. Then

$$
\begin{aligned}
R=\sum_{L=1}^{\infty} L q(L) & =\gamma /(1-\gamma) \times \sum_{L=1}^{\infty} L(1-\gamma)^{L} \\
& =\gamma /(1-\gamma) \times(1-\gamma) / \gamma^{2}=1 / \gamma
\end{aligned}
$$

The average domain size of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ is expected to be the reciprocal of the disorder probability γ. In the same manner, the average domain size of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ is expected to be $1 / \delta$, where $(1-\delta)$ is the continuing probability of the β-type sequence in domains I and II.

The model of Table 5 with $\gamma=\varepsilon=0.15$ and $\delta=0.01$ gave a satisfactory explanation of the observed diffuse scattering. The expected average domain sizes of the α - and β-types are estimated to be $1 / \gamma=6.7$ and $1 / \delta=100$, respectively, taken in

Figure 8
Schematic representation of the multiple-domain structure of $\mathrm{YV}_{4} \mathrm{O}_{8}$.
the unit of $5.339 \AA$. The estimated average domain sizes, $\sim 40 \AA$ for $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\sim 500 \AA$ for $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, correspond to the model illustrated in Fig. 8, although only a limited area of sequences is illustrated in the figure.

4.4. Susceptibility and domain structures

The magnetic susceptibility χ (Fig. 7a) of a powder specimen of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ is considered to be intrinsic to $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$. On the other hand, the χ value (Fig. 7b) of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ obtained from the same batch as that for the diffraction study is not intrinsic to $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ because the specimen consists of both α - and β-type domains. However, the latter data do not show the sharp peak at $51-52 \mathrm{~K}$ observed in the former data, but alternatively show a broad maximum at 83 K . One possible explanation for this fact would be the domain size effect. According to the model (Table 5, Fig. 8) and the estimated average domain size of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}(\sim 40 \AA)$, the broadening and peak shift in the susceptibility can be understood as resulting from the domain structure of the α-form with a small average domain size and dense domain boundaries (Fig. 8). On the other hand, the estimated average domain size of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}(\sim 500 \AA)$ is too large to cause the domain size effect. The rather sharp peak around 190 K in Fig. $7(b)$ is considered to be intrinsic to $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$ and free from the domain size effect.

5. Conclusions

Unusual diffraction phenomena observed in $\mathrm{YV}_{4} \mathrm{O}_{8}$ were examined using a commensurate composite crystal model and
one-directional disorder model. The structure was refined successfully on the assumption that two different superstructures, $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ and $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$, and their respective twin forms coexist in the crystals. Diffuse streaks centered at the positions of the α-type superspots were simulated using the matrix method for one-directional disorder and the average domain size of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ has been estimated. It has been demonstrated that the diffraction patterns arise from twin domains with the average domain size $\sim 40 \AA$ of $\alpha-\mathrm{YV}_{4} \mathrm{O}_{8}$ and twin domains with large domain sizes of $\beta-\mathrm{YV}_{4} \mathrm{O}_{8}$.

The authors are grateful to Dr K. Kato for stimulating discussions and valuable advise.

References

Decker, B. F. \& Kasper, J. S. (1957). Acta Cryst. 10, 332-337.
Friese, K., Jarchow, O., Kato, K. \& Kanke, Y. (1997). Z. Kristallogr. 212, 859-863.
Hendricks, S. \& Teller, E. (1942). J. Chem. Phys. 10, 147-167.
Janner, A. \& Janssen, T. (1980). Acta Cryst. A36, $408-415$.
Kakinoki, J. (1967). Acta Cryst. 23, 875-885.
Kakinoki, J. \& Komura, Y. (1965). Acta Cryst. 19, 137-147.
Kanke, K. \& Kato, K. (1997). Chem. Mater. 9, 141-147.
Kato, K. (1990). Acta Cryst. B46, 39-44.
Kato, K. (1994). Acta Cryst. A50, 351-357.
Kato, K., Kanke, Y. \& Friese, K. (1997). Z. Kristallogr. 212, 110-114.
Kato, K., Kosuda, K., Koga, T. \& Nagasawa, H. (1990). Acta Cryst. C46, 1587-1590.
Yamamoto, A. (1993). Acta Cryst. A49, 831-846.

[^0]: ${ }^{\mathbf{1}}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: CK0019). Services for accessing these data are described at the back of the journal.

